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Abstract
This paper presents an unsupervised method for produc-
ing a bounded rating of affective arousal from speech.
One of the major challenges in such behavioral signal
classification is the design of methods that generalize
well across domains and datasets. We propose a frame-
work that provides robustness across databases by: se-
lecting coherent features based on empirical and theoret-
ical evidence, fusing activation confidences from mul-
tiple features, and effectively weighting the soft-labels
without knowing the true labels. Spearman’s rank-
correlation (and binary classification accuracy) on four
arousal databases are: 0.62 (73%), 0.77 (86%), 0.70
(82%), and 0.65 (73%).
Index Terms: arousal rating, activation, unsupervised,
knowledge-based, inter-rater reliability, cross-corpora

1. Introduction
Emotion guides human behavior in conscious and un-
conscious ways and continues to be a phenomenon that
evokes multi-disciplinary scholarly interest. Efficient hu-
man communication is dependent on multi-modal re-
ception, processing, and transmission of affective cues.
Imagine, for example, the benefits of adapting one’s be-
havior based on a partner’s sometimes subtle emotional
signals. The study of emotion ranges from the fields of
psychology and sociology, biology, engineering, linguis-
tics, and even consumer research and risk analysis.

Affect is a complex process that is considered essen-
tial to developing psychological theory and interpreting
experimental results, and speech is a critical medium for
studying affect. Pollermann [1] has argued that prosody
is essential to fully understand cognition and emotion. In
many cases, prosodic correlates of affect are used as vari-
ates for analyzing human behavior. For example, pitch
has been used as a measure of arousal to analyze de-
pressed patient intervention outcomes [2], to produce a
visual depiction of arousal for negotiators [3], and to an-
alyze coping power in patients with breast cancer [1].

While pitch is an essential tool for conveying par-
alinguistic information, a speaker may display emotions
through other mechanisms and modalities. Juslin and
Scherer (2005) suggested that interactions among higher-
order variables may reflect combinations of measures

more closely related to human perception than low-order
variables. For example, ’vocal effort’ may be a combina-
tion of acoustic features such as voice intensity and high-
frequency energy [4]. Integrating aggregate-variates into
the experimental design would provide increased model-
ing capability and potential robustness, but such applica-
tions with natural affect often do not contain associated
labeled data, limiting the relevance of supervised algo-
rithms. Additionally, speaker-normalization, while a fun-
damental signal processing tool for increasing generaliz-
ability, is not observed to be universally applied when it
is preferable or even necessary. Thus, human behavior
researchers are in need of robust measures of affective
phenomena that are easily transferrable across corpora.

Engineers have focused on the importance of emotion
for system design. Affective computing work on emo-
tional speech has been motivated by human-machine in-
teraction [5], speech recognition, and speaker identifica-
tion [6]. As a result, the emphasis has been on optimizing
classification results for a given domain (database).

A new emphasis in emotion recognition is emerg-
ing in which the goal is cross-corpus robustness such
that engineering methodologies can be more readily ap-
plied to unlabeled data. Arousal recognition with speech
has found success but nevertheless with corpora depen-
dent variability– the success is generally much lower
for identifying valence from speech. Eyben et al. [7]
and Schuller [8] have demonstrated above-chance ac-
curacies in dimensional emotion classification without
any normalization across corpora, but Eyben et al. have
noted that the methodology still needed to mature. In
order to achieve higher performance, it is necessary to
consider speaker normalization to adapt to a new cor-
pus and person. Schuller et al. demonstrated that a
1,406-dimensional feature vector trained with speaker
normalization achieves much higher accuracies across
corpora [9]. Affective encoding in speech is a noisy pro-
cess due to contextual factors and speaker and corpus
variability; consequently there has been little agreement
across corpora on optimal feature sets and parameters.

In this work, we seek to connect the goals and con-
straints of psychological and engineering research by
providing a robust automatic, unsupervised knowledge-



Table 1: Description of emotional corpora and arousal labels.
Corpus Style Emotion Label − + Neu Total Speakers Setting Language

IEMOCAP spontaneous & scripted acted ordinal 2579 4304 (1112) 6883 10 (5f,5m) studio English
EMA read acted categorical 408 338 221 967 3 (1f,2m) studio English

emoDB read acted categorical 189 267 79 535 10 (5f,5m) studio German
VAM spontaneous natural continuous 502 445 N/A 947 47 (32f,15m) noisy German

based framework for producing ratings of arousal while
incorporating multiple prosodic features. Guided by the
hundreds of empirical studies summarized by Juslin and
Scherer [4], we select an interpretable feature set that is
both coherent across corpora and robust in automatic ex-
traction, requiring limited assumptions on the data. The
chosen features are median log-pitch, median intensity,
and HF500 (similar to spectral slope). Next, we obtain
an arousal soft-rating from each feature in reference to a
speaker’s neutral state features– the algorithm requires a
small amount of neutral speech per speaker. Lastly, we
treat the ratings as coming from noisy labelers and fuse
the labels weighted by their correlation with the average
rating as in [10]. This provides robustness when one of
the three features is corrupted, but the others are unal-
tered. We also demonstrate that our methodology is ef-
fective across two languages, German and English.

The rest of this paper is organized as follows: the
databases and methodology are presented in Section 2
and Section 3, the experimental results are discussed in
Section 4, and the conclusion is made in Section 5.

2. Databases
We have experimented with four publicly available
databases comprising scripted and spontaneous emo-
tional speech in German and English as well as natural
German emotional speech. The databases are IEMOCAP,
EMA, emoDB, and VAM (details in Table 1).

2.1. Acted Emotional Speech Copora

IEMOCAP is a database of mixed-gender dyadic interac-
tion between actors [11]. It contains data from 5 dyads in-
teracting in both spontaneous improvisation of hypothet-
ical emotional scenarios (2388 utterances) and portrayal
of scripted emotional content (4517 utterances).

IEMOCAP data is tagged for categorical and dimen-
sional emotional labels by at least two raters. The target
labels for the following experiments are the average acti-
vation ratings on an integer scale from 1 to 5. The data
was tagged sequentially using both audio and video. We
also include the data where no agreement on categorical
emotions is made (28%). Ambiguous displays of emo-
tion are known to be more difficult to identify. Data with
no voiced frames were discarded (<1% of utterances).

The USC-EMA corpus consists of read, emotional
speech from three trained actors performing five emo-
tions in English - neutral, hot anger, cold anger, happy,
and sad. We assume hot anger and happy to be high
arousal, and sadness and cold anger to be low arousal.

Data is rated by at least 4 raters. Two additional types
of variability are present. The speakers are asked to re-
peat each sentence-emotion pair in three speaking styles:
normal, loud, and fast. It is expected that such variabil-
ity will have a direct effect on perceived arousal. Each
speaker also has sensors on the face and tongue to sup-
port articulatory study of emotions [12, 13].

emoDB is an acted database of German emotional
speech with seven emotions - neutral, happy, angry, fear,
sad, bored, and disgust. The latter three are considered
low arousal and the preceding three are considered high
arousal. The intensity in this corpus is unreliable due to
varying mouth-to-mic distance [14], and a system that re-
lies explicitly on intensity would fail.

2.2. Natural Emotional Speech Corpus

The VAM corpus [15] is a natural emotional speech
database consisting of speakers in dyadic or triadic con-
versations on the German TV talk-show ”Vera am Mit-
tag” (Vera at noon). There are 47 distinct speakers in
the audio release and a total of 947 sentences. Each sen-
tence was transcribed by between 7 to 16 raters within
a continuous-valued scale along the dimensions valence,
activation, and dominance.

3. Method
We extract select features, compute Gaussians over
neutral-state features, score each utterance’s features ver-
sus the corresponding neutral model, and combine scores
weighted by their correlations to score means.

3.1. Knowledge-Inspired Prosody Features

In order to construct an unsupervised system that gener-
alizes across datasets, we must have features that are both
theoretically and empirically consistent. Physiological
theory predicts the vocal effects of arousal– for instance,
fear (high arousal) will cause muscle tension in the la-
ryngeal folds as a sympathetic nervous system response,
leading to higher pitch [16]. Empirical meta-analyses of
emotional speech studies corroborate such theory, show-
ing that median and variability of pitch, median and vari-
ability of intensity, voice quality (HF500), and speaking
rate all increase with arousal. Additionally, perceptual
studies have demonstrated similar correlations across nat-
ural and mood-induced emotional speech [4].

From the above features, we have chosen median
pitch and intensity and voice quality (HF500), all taken
from voiced frames, in an effort to increase orthogo-
nality and obtain robust feature extraction. HF500 is a
voice quality, spectral-slope measure computed as the to-



Table 2: Spearman’s rank-correlation ( Sp. ρ), fusion weights (w), and binary classification accuracy for the weighted-
fusion (W-fusion) arousal rating. For VAM, there are two speaker normalization methods: neutral (NN) and global (GN).

F0med HF500 INTmed UW-fusion W-fusion Unweighted
Corpus Style Sp. ρ w Sp. ρ w Sp. ρ w Sp. ρ Sp. ρ Avg. Recall

IEMOCAP spont. & scripted 0.51 0.78 0.46 0.79 0.59 0.91 0.62 0.62 73%
EMA read 0.62 0.74 0.73 0.83 0.74 0.91 0.76 0.77 86%

emoDB read 0.81 0.91 0.71 0.93 -0.49 -0.02 0.62 0.70 82%
VAM NN spontaneous 0.60 0.67 0.41 0.77 0.66 0.68 0.66 0.65 73%
VAM GN spontaneous 0.56 0.66 0.38 0.79 0.61 0.67 0.63 0.63 70%

tal energy above 500Hz over the lower-frequency energy.
Speaking rate is desired but assumes accurate ASR tools
or manual transcription are in place for a given corpus.
Given this configurable framework, it could easily be in-
serted if available. Pitch and intensity are extracted using
Praat [17], and HF500 is obtained using both pitch and
the original audio in Matlab. Pitch is log-transformed
since it has been shown that pitch is log-normal [18].

3.2. Speaker Normalization Model

Inter-speaker variability is repeatedly seen to impede
emotion classifier performance. In this unsupervised
framework, raw features are rarely informative and need
a baseline. Speaker normalization is expected to auto-
matically incorporate corpus channel variability, with re-
duced accuracy for larger channel variance. A speaker’s
baseline (neutral) is modeled as a single Gaussian per fea-
ture computed using all neutral-labeled utterances. In the
case of the VAM database, we performed multiple ex-
periments, one using normalization regardless of arousal
label and one in which a limited number of the earliest
neutral arousal labels was used for normalization.

3.3. Arousal Rating Computational Framework

In supervised learning, model parameters are learned
based on a set of labeled data. Instead of training a
high-dimensional model on one corpus and testing it on
another, we approach the problem from another angle.
Given a baseline for a speaker, we seek to fuse multiple
ratings from diverse knowledge-based features to get a fi-
nal arousal rating. This adaptive, summative framework
is analogous to human information processing– it has
been demonstrated that sensory integration, even within a
single mode, is linear with dynamic weights assigned by
apparent cue reliability [19].

First we obtain neutral models for each speaker.
Then, feature xi of utterance i, iε{1, 2, 3}, is scored, pi,
on the corresponding neutral Gaussian, Ni, as

pi = 2× cdfNi(xi)− 1

where cdfNi(·) is the cumulative distribution function of
single-variate Gaussian Ni. The score is bounded in the
range [−1, 1]. This score is computed on the neutral class
as well in the case of IEMOCAP, for which we have both
categorical and dimensional labels.

Ratings are fused by normalized weighted summa-
tion. The weights are calculated per-speaker as the Spear-

man’s rank-correlation of each score vector pi with the
score mean vector pµ, inspired by Grimm [10].

4. Results and Discussion
Our primary goal is to generate a continuous rating that
correlates with human annotations of arousal. However,
in order to generate comparable results for future studies,
binary classification is also performed. We arbitrarily set
the threshold to 0 on our arousal ratings to classify high
and low arousal. Unweighed average recall, the average
of the recalls of both classes, is reported.

4.1. Acted Speech Arousal Rating

The results for all three acted emotional databases (Ta-
ble 2) demonstrate that our arousal rating framework pro-
vides an interpretable measure of arousal, given a mini-
mal set of assumptions. It is important to note that in-
tensity and pitch are the most highly correlated features
with arousal labels for different databases. Fusion often
provides higher correlations than any single feature.

We obtain significant correlations of 0.77 and 0.70 for
EMA and emoDB, respectively. Weighted fusion correla-
tion exceeds that of unweighted fusion in both cases. The
emoDB intensity-subrating had an undesirably high neg-
ative correlation with arousal labels (although we knew
a priori that the intensity information is unreliable). It is
desirable to place very little weight on intensity in this in-
stance, and our fusion framework accomplishes this task
by assigning a weight of -0.02. Weighted fusion increases
correlation between the arousal rating and arousal labels
from 0.62 (UW fusion) to 0.70. Histograms of arousal
ratings show clear biases of the four emotional categories
to high and low arousal (Figure 1).

Arousal ratings generated on IEMOCAP correlate
well, ρ=0.62, with the mean rater labels– they are plot-
ted as a surface in Figure 2. Results were also generated
separately for the improvisation and scripted portions of
the IEMOCAP database, but no notable difference exists.

When we perform unsupervised binary classification,
we obtain unweighted average recalls of 86%, 82%, and
73% on EMA, emoDB, and IEMOCAP, respectively. Re-
calls are well above chance and results on emoDB com-
pare well to those presented by Schuller et al. [9].

Furthermore, when scoring with only 5 neutral utter-
ances per speaker in IEMOCAP (compared to∼100), we
achieve similar results of ρ =0.58 and a recall of 72%,
demonstrating that little data is needed for normalization.



Figure 1: Histograms of EMA Arousal Ratings for cate-
gorical emotions. Sp. ρ = 0.77 (p < 10e–100).

Figure 2: Histogram of IEMOCAP results. Sp. ρ = 0.62
(p < 10e–100). Hotter colors indicate higher occurence.

4.2. Natural Speech Arousal Rating

Correlation coefficients are reported in Table 2 for the
VAM database. Normalization is performed in two ways.
In one experiment, we consider only speakers with at
least 10 utterances, choosing up to four that are closest to
0-rated arousal for neutral modeling. In this limited case,
only 36 of 47 speakers and 870 of 941 sentences were
investigated. In the second experiment no requirement is
placed on speakers, and we perform speaker normaliza-
tion regardless of arousal labels.

Results demonstrate that the algorithm is effective in
the given natural emotional speech database. Classifica-
tion accuracy in the limited neutral speaker-normalization
case is 73%, slightly higher than the 70% in the general
case– which did not require explicit neutral state labeling.
While the overall correlations are medium-high at 0.65
and 0.63, within-speaker correlations are in the range [-
0.05,0.93] for the speaker-baseline enrollment trial. Al-
though correlations on as few as 10 utterances should be
interpreted with caution, other explanations may be that
some speakers had limited emotional variability or had
few training samples near their true baseline.

The results compare favorably to another approach
which uses many features, while making no assumptions
or normalizations across corpora or speakers [8]. We
achieve 17% absolute improvement over that result. Our
framework is simple and makes the primary, but practical
assumption that a small sample of neutral data is known.

5. Conclusions
We have introduced an unsupervised approach as an alter-
native to supervised, cross-corpora classification for the
rating of arousal. The framework makes the assumption
that labeled neutral speaker data is available, although
some robustness to this assumption may be interpreted
from our results on a natural, spontaneous emotional

speech corpus and that only a few samples are needed
on IEMOCAP for peak performance. In practice, neutral
data can be collected offline, or in an interview setting.

Several directions for future work are possible. Addi-
tional features may be chosen depending on the domain
such as lexical or voice quality features like NAQ. Results
using the same framework for more rating tasks should be
investigated. It is interesting to consider attempting va-
lence rating, but it is well known that obtaining valence
from speech features is much more difficult than arousal.
Future work will also include application to Behavioral
Signal Processing (BSP) domains such as couple therapy
and autism [20].
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